Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Sci Food Agric ; 102(12): 5460-5467, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1800382

ABSTRACT

BACKGROUND: Nasopharyngeal carcinoma (NPC) is publicly known as a malignant tumor. Our previous study reported that plumbagin exhibits potent anti-cancer actions. Nevertheless, more mechanical details of plumbagin against NPC remain unknown. The present study aimed to unmask the core targets/genes and anti-NPC mechanisms involved in the signaling pathways of plumbagin prior to biochemical validation. METHODS: A network pharmacology approach was employed to respective identification of mutual and core targets/genes in plumbagin and/treating NPC. Molecular docking determination was used to identify core target proteins for biochemical validation using human and cell line samples. RESULTS: In total, 60 anti-NPC genes of plumbagin were screened out, and then nine core target genes of plumbagin against NPC were identified accordingly. The enrichment findings revealed detailed biological functions and pharmacological pathways of plumbagin against NPC. Moreover, in silico analysis using molecular docking had determined the core targets for further experimental validation, comprising protein kinase B (AKT1) and sarcoma gene (SRC). In human sample validation, clinical NPC sections showed increased positive expression of AKT1 and SRC. Additionally, plumbagin-treated NPC cells resulted in inactivated protein expression of AKT1 and SRC. CONCLUSION: The re-identified core targets/genes in the molecular docking report may function as plumbagin-related pharmacological targets for treating NPC via experimental validation. Furthermore, additional anti-NPC molecular mechanisms of plumbagin action were disclosed on the basis of enrichment findings. © 2022 Society of Chemical Industry.


Subject(s)
Naphthoquinones , Nasopharyngeal Neoplasms , Humans , Molecular Docking Simulation , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism
2.
Front Endocrinol (Lausanne) ; 12: 714909, 2021.
Article in English | MEDLINE | ID: covidwho-1497067

ABSTRACT

Background: Clinically, evidence shows that uterine corpus endometrial carcinoma (UCEC) patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may have a higher death-rate. However, current anti-UCEC/coronavirus disease 2019 (COVID-19) treatment is lacking. Plumbagin (PLB), a pharmacologically active alkaloid, is an emerging anti-cancer inhibitor. Accordingly, the current report was designed to identify and characterize the anti-UCEC function and mechanism of PLB in the treatment of patients infected with SARS-CoV-2 via integrated in silico analysis. Methods: The clinical analyses of UCEC and COVID-19 in patients were conducted using online-accessible tools. Meanwhile, in silico methods including network pharmacology and biological molecular docking aimed to screen and characterize the anti-UCEC/COVID-19 functions, bio targets, and mechanisms of the action of PLB. Results: The bioinformatics data uncovered the clinical characteristics of UCEC patients infected with SARS-CoV-2, including specific genes, health risk, survival rate, and prognostic index. Network pharmacology findings disclosed that PLB-exerted anti-UCEC/COVID-19 effects were achieved through anti-proliferation, inducing cytotoxicity and apoptosis, anti-inflammation, immunomodulation, and modulation of some of the key molecular pathways associated with anti-inflammatory and immunomodulating actions. Following molecular docking analysis, in silico investigation helped identify the anti-UCEC/COVID-19 pharmacological bio targets of PLB, including mitogen-activated protein kinase 3 (MAPK3), tumor necrosis factor (TNF), and urokinase-type plasminogen activator (PLAU). Conclusions: Based on the present bioinformatic and in silico findings, the clinical characterization of UCEC/COVID-19 patients was revealed. The candidate, core bio targets, and molecular pathways of PLB action in the potential treatment of UCEC/COVID-19 were identified accordingly.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Carcinoma, Endometrioid , Endometrial Neoplasms , Host-Pathogen Interactions , Naphthoquinones/pharmacology , Adult , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/diagnosis , COVID-19/genetics , Calcium-Binding Proteins/drug effects , Calcium-Binding Proteins/metabolism , Carcinoma, Endometrioid/complications , Carcinoma, Endometrioid/diagnosis , Carcinoma, Endometrioid/drug therapy , Carcinoma, Endometrioid/genetics , Computational Biology , Drug Screening Assays, Antitumor/methods , Endometrial Neoplasms/complications , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Genetic Association Studies , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Membrane Proteins/drug effects , Membrane Proteins/metabolism , Middle Aged , Mitogen-Activated Protein Kinase 3/drug effects , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Docking Simulation/methods , Naphthoquinones/therapeutic use , Prognosis , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism , Uterus/drug effects , Uterus/metabolism , Uterus/pathology , Uterus/virology
3.
Eur J Med Chem ; 225: 113789, 2021 Dec 05.
Article in English | MEDLINE | ID: covidwho-1364001

ABSTRACT

SARS-CoV-2 as a positive-sense single-stranded RNA coronavirus caused the global outbreak of COVID-19. The main protease (Mpro) of the virus as the major enzyme processing viral polyproteins contributed to the replication and transcription of SARS-CoV-2 in host cells, and has been characterized as an attractive target in drug discovery. Herein, a set of 1,4-naphthoquinones with juglone skeleton were prepared and evaluated for the inhibitory efficacy against SARS-CoV-2 Mpro. More than half of the tested naphthoquinones could effectively inhibit the target enzyme with an inhibition rate of more than 90% at the concentration of 10 µM. In the structure-activity relationships (SARs) analysis, the characteristics of substituents and their position on juglone core scaffold were recognized as key ingredients for enzyme inhibitory activity. The most active compound, 2-acetyl-8-methoxy-1,4-naphthoquinone (15), which exhibited much higher potency in enzyme inhibitions than shikonin as the positive control, displayed an IC50 value of 72.07 ± 4.84 nM towards Mpro-mediated hydrolysis of the fluorescently labeled peptide. It fit well into the active site cavity of the enzyme by forming hydrogen bonds with adjacent amino acid residues in molecular docking studies. The results from in vitro antiviral activity evaluation demonstrated that the most potent Mpro inhibitor could significantly suppress the replication of SARS-CoV-2 in Vero E6 cells within the low micromolar concentrations, with its EC50 value of about 4.55 µM. It was non-toxic towards the host Vero E6 cells under tested concentrations. The present research work implied that juglone skeleton could be a primary template for the development of potent Mpro inhibitors.


Subject(s)
COVID-19 Drug Treatment , Naphthoquinones/chemistry , Protease Inhibitors/therapeutic use , SARS-CoV-2/enzymology , Viral Matrix Proteins/antagonists & inhibitors , Animals , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Cell Survival/drug effects , Chlorocebus aethiops , Drug Design , Drug Evaluation, Preclinical , Humans , Hydrogen Bonding , Molecular Docking Simulation , Naphthoquinones/metabolism , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , Vero Cells , Viral Matrix Proteins/metabolism
4.
Biochem J ; 478(13): 2465-2479, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1290092

ABSTRACT

SARS-CoV-2 is responsible for COVID-19, a human disease that has caused over 2 million deaths, stretched health systems to near-breaking point and endangered economies of countries and families around the world. Antiviral treatments to combat COVID-19 are currently lacking. Remdesivir, the only antiviral drug approved for the treatment of COVID-19, can affect disease severity, but better treatments are needed. SARS-CoV-2 encodes 16 non-structural proteins (nsp) that possess different enzymatic activities with important roles in viral genome replication, transcription and host immune evasion. One key aspect of host immune evasion is performed by the uridine-directed endoribonuclease activity of nsp15. Here we describe the expression and purification of nsp15 recombinant protein. We have developed biochemical assays to follow its activity, and we have found evidence for allosteric behaviour. We screened a custom chemical library of over 5000 compounds to identify nsp15 endoribonuclease inhibitors, and we identified and validated NSC95397 as an inhibitor of nsp15 endoribonuclease in vitro. Although NSC95397 did not inhibit SARS-CoV-2 growth in VERO E6 cells, further studies will be required to determine the effect of nsp15 inhibition on host immune evasion.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Endoribonucleases/antagonists & inhibitors , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation , Animals , Chlorocebus aethiops , Endoribonucleases/isolation & purification , Endoribonucleases/metabolism , Enzyme Assays , Fluorescence , High-Throughput Screening Assays , In Vitro Techniques , Kinetics , Naphthoquinones/pharmacology , Reproducibility of Results , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , Small Molecule Libraries/chemistry , Solutions , Vero Cells , Viral Nonstructural Proteins/isolation & purification , Viral Nonstructural Proteins/metabolism
5.
Mar Drugs ; 19(5)2021 May 11.
Article in English | MEDLINE | ID: covidwho-1256603

ABSTRACT

Background: Echinochrome A (EchA) is a pigment from sea urchins. EchA is a polyhydroxylated 1,4-naphthoquinone that contains several hydroxyl groups appropriate for free-radical scavenging and preventing redox imbalance. EchA is the most studied molecule of this family and is an active principle approved to be used in humans, usually for cardiopathies and glaucoma. EchA is used as a pharmaceutical drug. Methods: A comprehensive literature and patent search review was undertaken using PubMed, as well as Google Scholar and Espacenet search engines to review these areas. Conclusions: In the bloodstream, EchA can mediate cellular responses, act as a radical scavenger, and activate the glutathione pathway. It decreases ROS imbalance, prevents and limits lipid peroxidation, and enhances mitochondrial functions. Most importantly, EchA contributes to the modulation of the immune system. EchA can regulate the generation of regulatory T cells, inhibit pro-inflammatory IL-1ß and IL-6 cytokine production, while slightly reducing IL-8, TNF-α, INF-α, and NKT, thus correcting immune imbalance. These characteristics suggest that EchA is a candidate drug to alleviate the cytokine storm syndrome (CSS).


Subject(s)
Cytokine Release Syndrome/drug therapy , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Pigments, Biological/pharmacology , Pigments, Biological/therapeutic use , Sea Urchins/chemistry , Animals , Cytokine Release Syndrome/metabolism , Humans , Immunity/drug effects , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism
6.
J Nat Prod ; 84(2): 436-443, 2021 02 26.
Article in English | MEDLINE | ID: covidwho-1072094

ABSTRACT

A new axial chiral binaphtoquinone, hypocrellone (1), and a new perylenequinone, hypomycin F (2), were isolated from the stromata of Hypocrella bambusae, together with five known compounds, 3-7. The structures of 1 and 2 were assigned by spectroscopic and HRESIMS data analyses. The axial chirality of 1 was determined by electronic circular dichroism data analysis, and the absolute configurations of 2 and 3 were determined by X-ray crystallography. The axial chirality of 7 was determined by UV-induced photooxidation from 4. Compounds 1, 4, and 5 showed inhibitory activity against pseudotyped SARS-CoV-2 infection in 293T-ACE2 cells with IC50 values of 0.17, 0.038, and 0.12 µM. Compounds 4 and 5 were also active against live SARS-CoV-2 infection with EC50 values of 0.22 and 0.21 µM, respectively. Further cell-cell fusion assays, surface plasmon resonance assays, and molecular docking studies revealed that 4 and 5 could bind with the receptor-binding domain of SARS-CoV-2 S protein to prevent its interaction with human angiotensin-converting enzyme II receptor. Our results revealed that 4 and 5 are potential SARS-CoV-2 entry inhibitors.


Subject(s)
Hypocreales/chemistry , Naphthoquinones/pharmacology , Perylene/analogs & derivatives , Quinones/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Naphthoquinones/chemistry , Perylene/chemistry , Perylene/pharmacology , Quinones/chemistry , SARS-CoV-2/physiology
7.
J Biomol Struct Dyn ; 40(13): 5917-5931, 2022 08.
Article in English | MEDLINE | ID: covidwho-1042572

ABSTRACT

SARS-CoV-2 is the etiological agent of COVID-19, which represents a global health emergency that was rapidly declared a pandemic by the World Health Organization. Currently, there is a dearth of effective targeted therapies against viruses. Natural products isolated from traditional herbal plants have had a huge impact on drug development aimed at various diseases. Lapachol is a 1,4- naphthoquinone compound that has been demonstrated to have therapeutic effects against several diseases. SARS-CoV-2 non-structural proteins (nsps) play an important role in the viral replication cycle. Nsp9 seems to play a key role in transcription of the RNA genome of SARS-CoV-2. Virtual screening by docking and molecular dynamics suggests that lapachol derivatives can interact with Nsp9 from SARS-CoV-2. Complexes of lapachol derivatives V, VI, VIII, IX, and XI with the Nsp9 RNA binding site were subjected to molecular dynamics assays, to assess the stability of the complexes via RMSD. All complexes were stable over the course of 100 ns dynamics assays. Analyses of the hydrogen bonds in the complexes showed that lapachol derivatives VI and IX demonstrated strongest binding, with a stable or increasing number of hydrogen bonds over time. Our results demonstrate that Nsp9 from SARS-CoV-2 could be an important target in prospecting for ligands with antiviral potential. In addition, we showed that lapachol derivatives are potential ligands for SARS-CoV-2 Nsp9.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , Naphthoquinones , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Naphthoquinones/pharmacology , RNA , SARS-CoV-2 , Viral Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL